Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579

نویسندگان

  • Carmen M. Abfalter
  • Esther Schönauer
  • Karthe Ponnuraj
  • Markus Huemer
  • Gabriele Gadermaier
  • Christof Regl
  • Peter Briza
  • Fatima Ferreira
  • Christian G. Huber
  • Hans Brandstetter
  • Gernot Posselt
  • Silja Wessler
چکیده

Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deletion of the sigB gene in Bacillus cereus ATCC 14579 leads to hydrogen peroxide hyperresistance.

The sigB gene of Bacillus cereus ATCC 14579 encodes the alternative sigma factor sigma(B). Deletion of sigB in B. cereus leads to hyperresistance to hydrogen peroxide. The expression of katA, which encodes one of the catalases of B. cereus, is upregulated in the sigB deletion mutant, and this may contribute to the hydrogen peroxide-resistant phenotype.

متن کامل

Characterization of the chemotaxis fli Y and che A genes in Bacillus cereus.

This paper describes the first identification of chemotaxis genes in Bacillus cereus. We sequenced and studied the genomic organization and the expression of the cheA and fliY genes in two different B. cereus strains, ATCC 14579 and ATCC 10987. While cheA encodes a highly conserved protein acting as the main regulator of the chemotactic response in flagellated eubacteria, fliY, which has been p...

متن کامل

Characterization of type II and III restriction-modification systems from Bacillus cereus strains ATCC 10987 and ATCC 14579.

The genomes of two Bacillus cereus strains (ATCC 10987 and ATCC 14579) have been sequenced. Here, we report the specificities of type II/III restriction (R) and modification (M) enzymes. Found in the ATCC 10987 strain, BceSI is a restriction endonuclease (REase) with the recognition and cut site CGAAG 24-25/27-28. BceSII is an isoschizomer of AvaII (G/GWCC). BceSIII cleaves at ACGGC 12/14. The ...

متن کامل

Exploring the biosynthesis of unsaturated fatty acids in Bacillus cereus ATCC 14579 and functional characterization of novel acyl-lipid desaturases.

At low temperatures, Bacillus cereus synthesizes large amounts of unsaturated fatty acids (UFAs) with double bonds in positions Δ5 and Δ10, as well as Δ5,10 diunsaturated fatty acids. Through sequence homology searches, we identified two open reading frames (ORFs) encoding a putative Δ5 desaturase and a fatty acid acyl-lipid desaturase in the B. cereus ATCC 14579 genome, and these were named BC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016